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the measurement and source boundaries are either lines or circles. The theory and algorithms
presented are shown to be readily extended to the case of three-dimensional objects.
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1. INTRODUCTION

2 and 3. In figure 2 the object is still insonified by plane waves but the scattered field measurements
are performed over arbitrarily shaped surfaces surrounding the object- one surface for each direction
of plane wave insonification. In figure 3 the object is surrounded by an arbitrarily shaped surface 3
on which are placed point sources. The scattered field measurements are then performed over
arbitrarily shaped surfaces surrounding the object- one surface for each location of the point source.
In the case of figure 2 the object’s properties are to be reconstructed from the totality of scattered
field measurements performed in a sequence of experiments employing a full or partial set of
insonifying plane waves. In the case of figure 3 the reconstruction is to be performed from the
scattered field data generated as the point source covers a whole or part of the surface Z;. In either
case the measurement surface X can remain fixed throughout the sequence of experiments or,
alternatively, can vary from experiment to experiment.
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here and throughout the remainder of the paper. The final sectlon descnbes how the results
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proportional to the spatial Fourier transform of the scattered field over the measurement line.
Finally, an inversion formula is presented that allows the object profile to be reconstructed from the
scattering amphtude specnﬁed over a range of msonlfymg wave dlrectlons For the classical
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Insonifying Plane Wave
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Measurement
Plane

Fig. 1

Classical tomographic configuration.
Measurement plane rotates about a
central point "P" remaining always
parallel with the insonifying plane

wavafrant
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2. DIFFRACTION TOMOGRAPHY WITHIN THE BORN APPROXIMATION
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propagation is governed by the inhomogeneous Helmholtz equation

(V2 4+ e = KoMy . 08

Here, k = w/C, is the wavenumber of the field in the medium surrounding the object at frequency
» and O(r) is the "object profile." For acoustic scattering, Eq. (1) applies 1f the dens1ty of the
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the z axns) but vary in perpendncular directions (say over the x-y plane). We will also assume thal
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x-y plane. Cylindrical waves having axes aligned parallel to the z axis are considered in Section 4.
For both of these cases the field (1) will depend only on the x-y coordinates so that the wave
equation (1) is a two-dimensional equation.

The object profile O(r) is the quantity which is to be determined in diffraction tomography.
This quantity is related to the velocity profile C(r) of the object through the equation [4]

ci
o =1- m ) (2)

The goal of diffraction tomography is to reconstruct O(r) from scattered field measurements.
The most compact and convenient form of such data is given by the so-called plane wave scattering
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amplitude 1s defined via the equatlon

fs,5) = K [ dr 0w (g s)e ™, &)

where s, and s are two-dimensional unit vectors that can range over the entire unit circle. In the
above definition ¢(r;s,) is the total field (incident plus scattered) generated by an insonifying plane
wave whose unit propagation vector is s,. Throughout this and the following section we shall refer
to f(s.so) as simply the "scattering amplitude.”
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the direction of s, ; i.e.,

genekatf (52)

y =ks s, = Vk?—«7, (5b)

where § denotes the unit vector in the positive ¢ direction. (Recall that for the classical

has generalized {4) to the case of arbitrarily shaped measurement boundaries. As shown by Porter,

the generalization to such cases requires, in general, that both the scattered field and its normal
derivative be measured over the surface. We shall present, in the following section, a
generalization of Eq. (4) to arbitrarily shaped measurement boundaries that differs somewhat from
the extension proposed by Porter [10].
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where

0K = [dro@eik: 7

denotes the two-fold spatial Fourier transform of the object profile.

Eg. (6) states that the scattering amplitude f(s,s,) determines the two-fold Fourier transform of
the object profile over the locus of K values defined by the equation

K =k(s—s,) . 8

For fixed k and s,, Eq. (8} defines a locus of K vatues lying on a circle centered at K = — ks, and
having a radius equal to k. As discussed in references 4 and 5, the above result is, essentially, the
generalization of the projection-slice theorem of x-ray tomography to diffraction tomography and
forms the basis for all reconstruction algorithms presently employed in diffraction tomography. For

example, for the conventional tomographic configuration f(s,s,) is determined for unit vectors s
. _a & ____~ - —_

from the scattering amplitude without the need of i'merpolation or Fourier inversion. In the case of
two-dimensional objects the formula is given by [4, 5, 14]

Our@ = Eu_lnif J daxo [ ax/ToGs)? f(s, 506" 9

where x, and x are, respectively, the angles formed by s, and s with a fixed reference direction.
The subscript "LP" on O(r) means that a "low pass filtered" approximation to the object profile is
obtained; i.e.,

0@ = S AKOEIeEr (10)

_1
2n)?

184



DIFFRACTION TOMOGRAPHY

Otxo) = # f dx/1—(s5,)7 f(s,5,)e" &' (11a)
It then follows from Eq. (9) that O p(r) is given by
1T A
Oup®) = 5~ J a0t 11b)

The construction of O(r; x,) according to Eq. (11a) can be interpreted as a filtered backpropagation
process while Eq. (11b) represents a sum over view angles [4, 5].

3. PARALLEL BEAM INSONIFICATION

. _Q“LE‘;WD_‘_T anting i oy !ﬂg‘n! i}!n,:’lag“;’ asnidtwsiea rneligg gy
trom Eeld measurements performed over the arbitrary measurement boundary 2. The function
f(s,s,) so obtained can then be employed in Eq. (9) (or, equivalently in Egs. (11)) to obtain a
reconstruction of the object profile.

Porter [10] has addressed this problem and proposed a scheme which is a two-step procedure
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Appendix A.
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on X, i’ the unit outward normal vector to X at the point 1’ and Y denotes the derivative along

the fi’ direction. The field ¢(r') is the total field (incident plus scattered) generated by any incident
wave to the object O(r) and w‘s’ is the scattered wave component of y; i.e., the total field minus
the incident field.

Since ¢ (r') is the total field generated by any incident wave to the object we are free to choose
the incident wave to be the plane wave exp(iks,r). For this choice (') = ¢(r',s,) and the left-
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measure both ¢® and %w‘s’ on X. Moreover, in theory it is not necessary since it can be

shown that either one alone uniquely determines the other [15].
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In practice it is possible to obtain an exact relationship between the scattering amplnude f(s,s,)
2 (s}

of such boundari called separable boundaries”, are circles and infinite stra
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Eg. (13) exactly cancels the integral involving vl if n"s <0, and the two are equal if i"s =

[16]. Thus, we have the general result that for all s such thatn's 2 0
(s, s,) = 2ikfi’"s f Al s e (14)

where we have denoted by ¢"'(/';s,) the scattered field ' (r’;s,) evaluated on the measurement
line. Eq. (4) is then a special case of (14) for the classical tomographic configuration where 4’ = s,,
the direction of propagation of the insonifying plane wave.

For the case of a circular boundary one finds that Eq. (13) reduces to [16]

f(s,8,) = 4i | do 6" (35, Fy(x—0) . (as)
0
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F00 = 553 nzm H,(kR)

eint (16)

where H,, is the n’th order Hankel function of the first kind. [t should be noted that the center and
radius of X can be changed as a function of the insonifying wave vector .

An approximate expression for f(s,s,) for arbitrarily shaped boundaries which involves only the
scattered field can be employed if the boundary curvature is such that it can be approximated by a
straight line in the vicinity of each point. This requires that the local radius of curvature be much
larger than a wavelength. If this condition is met then the arguments leading to Eq. (14) for the
case when X is a straight line can be applied and Eq. (13) then reduces, approximately, to

f(s,s,)= 2ik fdl’é’-g P s e ke (n

where 11"s must now remain under the integral sign since 1’ is not constant for a curved boundary.

4. CYLINDRICAL BEAM INSONIFICATION

In this section we consider the case where the object is insonified by a cylmdncal w
generated by a line source located on a closed boundary 3, surr@unding the object. or pa é}i

beam insonification the object profile is reconstructed from scattered field measurements performed

over an arbitrary boundary X surrounding the object. A reconstruction of the object profile is

obtained from the set of scattered field measurements that result from using different directions of
insonification of the incident wave (different unit wave vectors s,). For the cylindrical beam case

we will also assume that the scattered field is measured over an arbitrary boundary which

completely surrounds the object. The object profile reconstruction is then obtained from the set of

scattered field measurements that result when the location of the line source varies over 3.
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second method combines the two steps into a single mathematical operation. What results is then a
filtered backpropagation algorithm where the "sum over view angles" operation is replaced by a
"sum over source points" operation. This second method is the diffraction tomographic equivalent
of the fan beam filtered backprojection algorithm of x-ray tomography [17].

We begin by defining, in analogy with Eq. (3), the cylindrical wave scattering amplitude vy (s;R,)
of the object:

Y& R) =K [ dro@ winR)e . (18)

— v i {1pr
plays the same role with respectrto ins;hifying cylindrfcal waves as does the plane wave scattering
amplitude f(s,s,) for insonifying plane waves.

! ji,n-,-i: KRR PUTOR: Loa . 1 1 10 1 1 £ O 1 ‘

YR = [ 'fikd sy (iR + Ly R fe T (19)
z

which is the cylindrical wave counterpart to Eq. (13). Because Eq. (19) is mathematically identical
to Eq. (13), the arguments leading to Egs. (14), (15) and (17) remain valid for Eq. (19). In
particular, we have for straight line measurement boundaries the result

and for circular boundaries

and, finally, for boundaries with weak curvature:

y(&,R,) = 2ik [ dI'fs g0 R)e L, (20¢)
z

The cylindrical wave scattering amplitude y(s, R,) is seen to be linearly related to the scattered
wave y®(';R,) generated by an insonifying cylindrical wave. Moreover, the scattered field
¢ (r';s,) produced by an insonifying plane wave can be shown to be linearly related to the

S) (ot . .
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where d/, is the differential length on X, i, the unit outward normal to X, and 6(31 denotes the

Q
derivative along the A, direction.

Eq. (21) is in the form of a linear mapping between the cylindrical wave scattering amplitude

fite gesiz=sigey ﬁ‘i__.] .._,.Ifi e ﬁ_fl. *nl:',‘anﬁ& it

UL,
important to remove this quantity from Eq. (21). This can be done exactly for cases where X, is a

. 1187522 *

with Eq. (22) holding for all s, such that fi;'s, = 0 and where I, now denotes the location of R, on

the straight line boundary. The relationship between Egqs. (22) and (21) is seen to be entirely

analogous to that existing between Eqgs. (14) and (13) of Section 2. Indeed, Eq. (22) is derived

£, hd S ) - 1 — . M 2 Vol (19
fﬁ_

becomes [16]

(5,50 = J 48y (s B)Fr (B—xo) - 23
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the angles formed by R, and s, with an arbitrary reference direction. Finally, for cases where the

curvature of the boundary X, is sufficiently small that it can be approximated by a straight line in
the vicinity of each point; we have

ok (24)

f(§’ §D) = - dl, ﬁo'ﬁo Y (§v .B.o)e

[SYES
A4

Egs. (19)-(24) allow the plane wave scattering amplitude to be synthesized from cylindrical wave

scattering data. The cylindrical wave scattering amplitude is first computed using (19) or (20) and
— . ' . L — O ——————————————————
i

2 are stralgni lines or Circies anda 1or cases wnere e curvaiure ol potn poundaaries 1s small.

The transformations listed in table I allow the plane wave scattering amplitude to be synthesized
from cylindrical wave scattered field data. Once f(s,s,) is computed the plane wave filtered
backpropagation algorithm as embodied in Egs. (9) or (11) can be employed to obtain a
reconstruction of the object profile. An alternative, one step reconstruction algorithm, is readily
derived by substituting the transformations listed in table I into Eq. (9) and reorganizing the resuit.

— _§ SomX, -
— A% ;fr\mcrn—‘mduc‘ ire—ca K 1GVULIDLE uvtlunmmm -

lines, circles and weakly curving boundaries - covered in table I.

The reconstruction algorithms presented in table II are "fan beam" algorithms in the sense that
they operate directly on the measured cylindrical wave scattered field data. Like the plane wave
filtered backpropagation algorithm presented in Section 2, they can be decomposed into two
sequential operations:

1. Generating a partial reconstruction using data collected in a single scattering experiment.

Eqs_. (19)-(24) allow the plane wave scattering amplitude to be synthesized from cylindrical wave

T e— il i {3 ol L0 G e 0 e ooyt e V™
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the result is employed in Egs. (22)-(24) to compute f(s,s,). By combining these equations, the two

| fienecaa ho rnmhisadinte 9 ringle intearal transfnre relatine the culindricel wave §oatlomingedal——

djrectlv to the plane wave scattering amolllude Table Llists these transforms for cases where X and

S —

from cylindrical wave scattered field data. Once f(s,s,) is computed the plane wave filtered
backpropagation algorithm as embodied in Egs. (9) or (11) can be employed to obtain a
reconstruction of the object profile. An alternanve one step reconstruction algorithm, is readily

s uhggiatian thowt e ahiedeintd “owl@rod raseusigipotho Faeult

. Trtedl Reronctecptine _fpagarles—iediffascsms J
| |2, 5 lines 0,,(0) = [ar [ary®¢-1)G r;l’.l,), where
- ——J
Go (5119 =~ - (2 )Z f dxo f i (f5e) (89~ T—(5,50) e e-Dg 50 R
3,, 2 circles O p() = de fdo- v (o;8)G,(r;0,8), where
Ge(o.8)= é“‘)z J dxof dx+/1=(55,)? Frox—0)Fg (B—x)e "
3,,5 arbitrary Op() = fdlofdl "$O (' R)G,(r;r',R,), where
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they operate directly on the measured cylindrical wave scattered field data. Like the plane wave
filtered backpropagation algorithm presented in Section 2, they can be decomposed into two

sACuaRial-apaatinn g’

1. Generating a partial reconstruction using data collected in a single scattering experiment.

2. Summing the partial reconstructions obtained in step 1 from different experiments to obtain
the final reconstruction.

In table 1I the inner integral represents step 1 while the sum over partial reconstructions is
performed by the outer integral. In the plane wave case, the sum over experiments consisted of
summing over different insonifying angles x,. Clearly, for fan beam insonification (cylindrical wave
insonification) the sum over experiments corresponds to an integral over source points R,

We conclude by remarking that the fan beam reconstruction algorithm for circular boundaries
given in table Il is the generalization, to diffraction tomography, of the x-ray fan beam algorithm
presented, for example, in [17]. The parallel beam filtered backpropagation algorithm of diffraction
tomography is known to reduce, in the limit where the wavelength goes to zero, to the filtered
backprojection algorithm of x-ray tomography [4]. It should then be expected that the circular
boundary fan beam algorithm in table II should, likewise, reduce in this limit to the corresponding
X-ray algorithm. We have not yet been able to establish this reduction and consider this an
interesting and important future research goal for fan beam diffraction tomography.

5. CONCLUDING REMARKS

reconstruction proce!ures !or !an Eeam !1!ract1on tomograpEy. l!e !rst 0! t!ese 1S a two-step

inversion algorithm where plane wave scattering data is synthesized from cylindrical wave scattering
data in the first step and the object profile is reconstructed in the second step using the parallel
beam (plane wave) filtered backpropagation algorithm on the synthesized plane wave data. The

1 i ine 556 ‘ngi i'n!q ) s]ng!% "fan heam filtarad hacknrnnaagatinn

E L
locations.

The results presented in the paper apply only to two-dimensional objects; i.e., objects whose

' SLSSS——— Ay e O = J
dimensional case. This extension can be performed in two ways The first of these simply requires
: < v

boundary X is a circular cylinder while for a line boundary 2 becomes a plane surface. The
treatment presented in the paper then applies for three-dimensional objects enclosed by 3 if the
two-dimensional scattered field measurements performed over X are preojected onto the boundary
3. The resulting reconstruction will be of a projection of the three-dimensional obiect profile omgﬁ

-~ R rans cmn veam mmnaw

plane as the boundary 3. Thrs ﬁrst method is the generalrzatron to the case of arbrtrary

The theory and algorithms presented here can also be generahzed to the three- drmensronal case

defined by
fls.s0) = k2 [ drO@w(nsye e, (25)

where now r= (xy,z) and s = (s,,8,5,). Egs. (4)-(8) are similarly generalized to the three-
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Ly

where d{}, and dQj are differential solid angles and the integrals are over 4w steradians. By

employing Eq. (26) together with the appropriate three-dimensional generalization of the
expressions for the scattering amplitude given in table I, three-dimensional reconstruction
algorithms analogous to those given in Table II can be readily obtained.

APPENDIX A - DERIVATION OF EQ. (12)

We begin by setting ¢(r) in Eq. (1) equal to the sum of an insonifying wave ¢ (r) and a
scattered wave ' (r). Since the insonifying wave satisfies the homogeneous Helmoltz equation;
i.e., Eq. (1) with O(r) = 0, we find that

(V2 + KDy (0) = KO@yln) . (A1)

We can obtain a relationship between the scattered field ¢ and its normal derivative 56;111(5)

evaluated on the boundary 3 by making use of Eq. (A.1) and the fact that exp(—iksr) satisfies the
homogeneous Helmholtz equation, i.e.,

(V2 +xHe k=0 . (A2)
N T
= k20(y(r)eksr (A.3)

Integrating with respect to r throughout the volume of space bounded by % and applying Green’s
theorem then yields

—iksT— —iksT a S s a —iks 1
szdzr oMy(ne k-—!cll ‘e k—-—a; 9 (1) —y! )(1)&-1-6 k——] . (A.4)

e i ey | 1 i —

(A.5)

— kst Kk _r}ge_ikﬂ ,

on

- e —
k2 [ dr 0@y eter

- de l—a— O () +ikhs ¢ ® (1) ] g ket (A.6)
3 on

which is the desired result.

APPENDIX B - DERIVATION OF EQ. (21)

ce centered at r’ satisfies the eaualinn
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where Vg denotes the Laplacian operator in the r’ coordinates. The field @ (r',sy) generated by the

e

T T

Upon multiplying Eq.{(B.1) by ¢(r’;sy) and Eq. (B.2) by u(r;r') and subtracting the two resulting
equations yields

W8 VIp(nr) — i) Vg sy

= y(r';80) 8(r—1) . (B.3)
(s VAP — ) VAl sy

= y(r';80) 8(r—1) . (B.3)
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