Applied Analysis Prelim

10.00am{1.00pm, August 16, 2011

Problem 1. [Fixed point theorem] Show that the_equation:

$$v(x) = sin(x) + \int_{0}^{L_{x}} v^{2}(s) ds$$

has a solution in $C^1([0;]; R)$ for some > 0.

Problem 2. Let X be the linear space of all functions $f : \mathbb{N} / \mathbb{R}$, where $\mathbb{N} = f_{1,2,3,\ldots,g_i}$ such that

$$kfk:= \bigcup_{k=1}^{U} \frac{1}{N} (k+1) jf(k)j^2 < +7$$

Show that (X; k k) is a Banach space.

Problem 3. Show that the limit

$$\lim_{\substack{t \to 0 \\ 1 \to 0}} \frac{z_{-1}}{1 - e^{-x}} f^2(x) dx$$

exists and is nite if and only if $\frac{R_1}{0}xf^2(x) dx < 1$.

Problem 4. Let $k : [0;1] [0;1] / \mathbb{R}$ be a continuous function and, for each n = 1, let $K_n : C[0;1] / C[0;1]$ be the linear operator de ned as

$$(K_n f)(x) := \frac{1}{n} \sum_{i=1}^{N} k x_i \frac{i}{n} f \frac{i}{n}$$

- (i) Show there exists and determine explicitly a bounded linear operator K : C[0;1] / C[0;1] such that K_n / K strongly.
- (ii) Is it in general true or false that $K_n \neq K$ uniformly? Justify your answer with a mathematical proof or a counter-example.

Problem 5. [True/False question - no justi cation] In this problem, $A : l^2 / l^2$ is a self-adjoint compact operator. We de ne

$$E = f j$$
 is an eigenvalue of Ag.

Here we do not count multiplicity. Give a true or false answer to the following statements.

- (1) Some of such an operator is invertible.
- (2) For some A, S E with $S = f^{1} + 1 = n j + n 2 N$; all positive intergersg
- (3) For some A, $E = f_{1,2,3g}$
- (4) For some A, E = f0;1;1g