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Abstract. In this paper, we introduce the concept of a pro t frontier of continuous order 2 [0; 1]
and provide an easy to implement nonparametric estimator for such pro t frontiers. From a sta-
tistical perspective the estimator we propose is, in essence, the estimator for a conditional quantile
with a suitably de ned conditioning set. Inspired by Aragon et al. (2005) in a production function
setting, instead of studying a traditional pro t frontier, whose estimation might be very sensitive
to outliers and extreme values, we de ne a class of pro t functions of order based on conditional
guantiles of an appropriate distribution of pro t, input and output prices. We show these quantiles
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of nonparametric stochastic frontier models include, among others, Kumbhakar et al. (2007) and
Martins-Filho and Yao (2013). A critical drawback of stochastic frontier models is that they gen-
erally require strong distributional assumptions regarding the ine ciency and noise terms. In
addition, by assumption the stochastic frontier model error terms have a non-zero conditional ex-
pectation, and the average production relation is maintained for all rms. However, it is highly

possible that the relationship might vary at di erent e ciency levels.

On the other hand, nonstochastic frontier models assume that all observations lie inside the frontier



of order






or producing unit i. We denote the support of f by and focus on the set =f( ;p;w) 2

P(P p;W w)>0g. Given Cp,y =FfP  p;W  wg we let

F( iCpw) =P( P pW w)=

P( P pW  w).

PP pW w

and give the following probabilistic de nition of a pro t function

(p;w) :=inff 2[0;B ]:F( jCphw) = 10:

As de ned, the pro t function (p;w

€

)



That is, the quantile curves f(



The concept of pro t functions of order can be easily extended to settings where additional
constraints on pro t and technology are appropriate. we give two examples. First, rms can face
di erent production capacities and by consequence di erent pro t functions. If a rm has small

production capacity, the value of pro t would be small compared to a representative rm, even if



where represent the elasticity of market demand and F( jC .) = P( j W w): The



and Martins-Filho (2010). The kernels My are de ned as

X .
M) = e ™

sj s
k0 jsj=1 1

where cy.s = ( 1)5+"C§l‘:k, Czsl'(H< are the binomial coe cients and K () is a traditional (seed) kernel



where

8
- < 0; it =0
f( jCow) = @If(@JCp;w) = b IP?‘Ei Mk(%)l(Pi oW w)
} nt in=1|(Pin pWi w) It >0
and n(p;w) = aE;w)+ @ ) (p;w) for some 2 (0;1). In the following section we

provide some asymptotic characterizations for our estimator, including consistency and asymptotic

normality.

3 Asymptotic characterization of .,

In this section we provide theorems establishing asymptotic properties of our estimators. All proofs
of the theorems and required lemmas can be found in Appendix. We begin by listing and discussing

assumptions that are su cient to establish our main theorems.

3.1 Assumptions

Assumption 1. f( j; Pi; W;)giL, is a sequence of independent random vectors taking values in a
compact set  =[0;B ] Spw where Spw is a compact set in R% R%,. For any i, ( i;Pi; Wi)
have the same joint distribution F and joint density function f as the vector ( ;P; W), f is de ned
on R R% RY% with support

Assumption 2. (i) The seed kernel K() is a bounded symmetric density with compact support
[ Bk;Bk] and RBE';K K()d =0. (ii) RBE';K 2K()d = Z. (iii) Forany ; '2[ Bk;Bkl
we have jK( ) K(9j mgj % for some 0 < mx < 1. (iv) For all ; 2 R, we have
i) (D mj % for some 0 <m < A, where ()=RBKK()d.(v)For xed k,
R JK(®)jt?kdt < 1.

The rst assumption is standard in the deterministic frontier literature. Assumption 2 is the

same as Martins-Filho and Yao (2008) except (v). We need Assumption 2 (v) for restricting the
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order of bias(See the similar assumption in Mynbaev and Martins-Filho (2010)). Note that (7)
implies that for any k 2 N, the above assumptions also hold for kernel My. That is, (i) Mg() is a
symmetric bounded kernel function with compact support [ Bn; Bm]. R BE';"M Mg( )d = 0; (ii)
RBg'M M( ) = 3 =2 ZKPlS(:l ksS?; (i) For any ; "2 [ Bm;Bm], we have jMy( )
Mi( D)j  mmj U forsome 0 <my < A;(iv) Forany ; "2R,wehavej m() m(9j

m j % for some 0 <



Assumption 5A imposes an order 2k Lipschitz condition on Fg( ;p;w) with respect to . From
the proof of Theorem 1 in Mynbaev and Martins-Filho (2010) we know that boundedness of
Ff(2k)( ;p;w) implies a Lipshitz condition of order 2k. As a result, Assumption 5B is a more
strict condition than 5A in the special case k = 1. Given Assumption 5A, we can restrict the order
of the bias for our estimator to h?X. Given Assumption 5B, we can obtain a speci ¢ structure for

the asymptotic bias and variance by using a Taylor expansion.

3.2 Asymptotic Properties

We start by showing that F( JCp;w) is asymptotically a proper distribution function for kernels
that satisfy Assumption 2.

Proposition 3. Under Assumption 2, we have: (i) F( jCpw) is nondecreasing in ; (ii) F( jCpw)
CK






density function is, the faster the bias term would vanish.

4 Monte Carlo Study

4.1 Setup and Implementation

In this section, we design and conduct a small Monte-Carlo simulation to implement our estimator
and investigate some of its nite sample properties. We also compare the performance of our
smooth estimator and an similar estimator based on the empirical estimation. The data generating

process is given by

i = PWHR; i=1:5n

Ri = exp( Z);, Zi Exp()

where  represents pro t, Pj and W; represent output and input prices. In this simulation, we
assume both output and input price are scalars. Prices are uniformly drawn from a meshgrid
[Pripu]  [wiswu] =11;3]  [1;3]. Rij =exp( Z;j) represents e ciency score for each unit i. Z; are
independently generated from an exponential distribution with parameter = 1=3. As a result
the density function of R; is f(r) = 3r? with support (0;1] and a mean 0:75.  (p;w) is the
pro t function. In this simulation we consider the functional form (p;w) = p®®w &%, One can
easily verify this function satis es all properties of a pro t function: a) nondecreasing in p and
nonincreasing in w; b) convex in both p and w; ¢) homogenous of degree one, and d) continuous.
Several experimental designs are considered: We estimate pro t frontiers of order = 0:25;0:5;0:75
and 0:99 using Mg kernel functions with k = 1;2 as well as an empirical distribution. In each
experiment, We consider two sample sizes n = 200 and n = 400 and perform 2000 iterations to

obtain the averaged absolute value of bias and root mean squared error of each estimator.

P
The empirical pro t frontier of order is estimated as follows: Let Np.w = L I(Pi  p;Wi  w).

For j = 1;::;; Npw, get the order statistic of the observation j,y such that ) (i2)

14



(inpiw)* The empirical conditional distribution Fe( JICphw) is

b fomy = L )




in Mynbaev and Martins-Filho (2010), we can estimate 11, I, and f a suitably de ned Rosenblatt
density estimator. The optimal bandwidths for the estimators with higher k are yet to be obtained.

We use the same bandwidth as k = 1.

4.2 Results and Analysis

Table 1 gives the bias and root mean square error of our smoothed estimator with order of kernel

k =1 and k = 2 compared with the empirical estimator evaluated at prices p =2 and w = 2.

Table 1: Bias and RMSE under Each Experiment Design

jBiasj RMSE
n=200 | Kernel Kernel Empirical | Kernel Kernel Empirical
k=1 k=2 k=1 k=2
0.25 | .018 .019 021 .024 .024 .027
0.50 | .020 .021 .024 .033 .033 .037
0.75 | .027 .027 .030 .031 .032 .037
0.99 | .132 .261 .084 175 .358 .095
n=400 | Kernel Kernel Empirical | Kernel Kernel Empirical
k=1 k=2 k=1 k=2
0.25 | .014 .013 .015 .017 .016 .019
0.50 | .015 .012 .017 .018 .016 .019
0.75 | .019 .016 021 .023 021 .028
0.99 | .083 .098 .057 .102 121 .068

The simulations seem to con rm our asymptotic results. In particular, the root mean squared error
of all estimators decreases with the sample size, con rming our asymptotic results. Our smoothed
kernel estimator outperforms the empirical estimator in the cases with = 0:25;0:5 and 0:75.
Although we do not use the optimal bandwidth, the performance of the estimator with kernel order
k = 2 is quite good. When the sample size is 200, the performance of estimators with k = 1 and
k = 2 are very close. When the sample size grows from 200 to 400 we observe a larger improvement
for the estimator with k = 2. For example, with = 0:5, the bias of the estimator with k = 2
decreases from .021 to .012, while the bias of the estimator with k = 1 just decreases from .020 to
.015. We nd the similar results for all . This is consistent with the result in Theorem 2 which

states the bias decays faster as k increases.
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We also observe that as  increases, all estimators show larger bias and mean square error. This
can be interpreted as resulting from the fact that there are less e ective data available as  grows.
As a result, when is close to 1, pro t functions of order become more di cult to estimate. Note
that the performance of our smoothed estimator is especially poor when = 0:99. This is most
likely due to the fact that our distribution function has compact support, and it is not smooth near

the boundary. Therefore, the smoothed estimator can generate large biases.

In summary, our simulation results indicate the proposed smooth estimator for the pro t function
of order can outperform the empirical estimator in most cases as long as is not very close to
1. Additionally, increases in the order k of the My kernel may increase the convergence speed of
the bias. However, we do not suggest to use our method in approximating the full frontier where

is approaching to 1. Note that the full frontier is not required in estimating the e ciency in our
method. According to the analysis in section 2, any  frontier with 2 (0;1) can be served as a

standard in the e ciency analysis.

5 Conclusion and Discussion

In this paper we consider the construction and estimation of a pro t function of continuous order

2 [0;1]. We de ne a class of such pro t functions based on conditional quantiles of an appropriate
distribution of pro t, input and output prices. We show that they are useful in measuring and
assessing pro t e ciency. We show that our estimator is consistent and asymptotically normal
with a parametric convergence speed of pﬁ. Furthermore, the bias of our estimator decays to zero
faster than the traditional kernel estimators. A Monte-Carlo simulation is performed to implement
our estimator; investigate its nite sample performance and compare it to the empirical estimator.
Simulation results seem to con rm the asymptotic results we have obtained and also seems to
indicate that our proposed estimator can outperform its competitors in most cases. However, our
estimator seems to possess large boundary bias. Decreasing the boundary bias would be a desirable
direction for future work. The choice of optimal bandwidth when k > 1 is another issue to address.

It is also desirable to study the decomposition of technique e ciency and allocative e ciency.

17



Appendix - Proofs and auxiliary lemmas

Proposition 1 Proof. Forany ( ;p;w)2 ,if < (p;w)=inff 2[0;B ]:F( jCphw) g,
then 2f 2[0;B ]:F( jCphw) g. Thatis, F( jCow) < . If > (p;w), there exist some
"> 0suchthat > (p;w)+". By the de nition of (p;w), for any ™ > 0, there exist some

02fF 2[0;B]:F(jCphw) g such that o < (p;w) + ". By the strict monotonicity of
F(iCpw), F( iCow) =F( (p;wW) +"jCpw) = F( 0jCpw) . The result then follows. O

Proposition 2 Proof. (i) Sincef (p;w)go 1 is monotone nondecreasingin ,andsup, f (p;w)g=
(p; w).The result then follows. (ii) Let be a compact set interior to the support of (P;W).

De ne n(p;w) = ; 1(p;w). Since ¥ (p;w)go 1 is monotone nondecreasing in , for any

n2N, np;w) n+12p;w). From (i), limphx 1 n(p;w) = (p;w) pointwise. By Dini’s Theorem,

SUPp:wy2 J n(PsW)  (p;w)j ¥ 0. Thus, for any " > 0, there exist some N such that whenn > N,

SUPp:wy2 § n(PsW) (p;w)j <™. That is, there exist =1 % such that when j lj< ,

SUpwyz | (Piw) ()i <™. O

Proposition 3 Proof. (i) First, note that by de nition when = 0 we have F( iCow) = 0. If
0< 1 », we only need to prove P( 2;p;w) P( 1;p;w) 0, since the denominator does not
depend on . By (5),

X2 i Z, i
PCapw) P(ipw) = (nha) * ( Mi(——)d Mi(———)d I Wi W)
i=1 0 n 0 n
0
since My is a symmetric density. (ii) For any ¢ 2[0;B ], let o< forsome =>0. Then,
i : X z i o i
PCipw) P oipw)j = (nhp) ( Mi(——)d Mi(——)d I piWi W)
i=1 0 n 0 n
1 X Z o+ i Z 0 i
(nhr) ( Mic(——)d Mi(——)d )P piWi - w)
i=1 0 n 0 n
X Z o i
= (nhp) ( Mi(— )P piWi w)
i=1 O n
hn * sup - M(7) <™
’2[ BM;BM]

18



where the last inequality follows for any > 0, since can be made as small as desired. (iii) follows
directly from (i) and (ii). For (iv) we need only prove that for any (p;w), there exists some N (p; w)
such that for all n > N(p;w), hy, 'lim s 1 0 Mk(—-—)d



Proof. (a) Since h, ¥ Oasn ¥ 1, there exist N(p;w) 2 R4 such that for all n > N (p;w),

x Z .
ECCipw) = El(hn) * (M —)d)IP piWi - w)]
z Flz,72
= hy ! M(——d I(P W w)F( ;PiW)d d(P;W)
Ri1 RI2 1 0 n
z 217

= M(P)d”I(P ppW  w)f( ;P;W)d d(P;W)
ZRdl Rdzz 1 Bm
1

= m (
Rd1 R92 1 hn

NE - pwW wf( P;W)d d(P; W)

R
Let Fe( ;p;w) = 4 F( ;p;w)d . Using integration by parts,

Zl
M ( h NP ppwW w)f( ;P;W)d
n
1
= hp M(HIP pW - w)F( hn”; P;W)d~
7 a1
1
= MIP  p;W w)dFe( ha ;P W)
1 Z
1
= MOIP pW wWFe( haPW)EZ + Fe( ha B PWHIIP W w)d m(?)
Z . 1
= 0+ Mc(P)Fs( ha”;PWHI(P pi W w)d”
1
1 Za c
= = K (=s)Fe( ha”:P;WHI(P piW  w)d”
jsj=1
1 X
= — K(t) Cr:sF ( shpt; P, WHI(P p;W  w)dt
Ck:0 1

jsji=1

20



P R
Since jksjzl g';—z =1, Y K(dt=1, we have

EP(;mw) P(:pw)
1 Z Z 4 X
= —_— K (1) Ck:sFe( shnt; P,WHI(P p; W w)dtd(P; W)
Ck:0 RI1 R92 1 jsi=1
Z Z
f( ;P;W)d d(P; W)
Dpw 1
1 Z Z 4 <
= —_— K (1) Cr:sFe( shnt; P,WHI(P p; W w)dtd(P; W)
Ck:0 Rd1 Rd2 1

+ =2 K@®dtFe( ;P;,WHII(P  p; W w)d(P; W)
1

isi=1

= — K@) 2Fe( ;P;WHI(P p; W w)dtd(P; W)
Ck:0 Rd1 RY2 1

By Assumption 5A, we have

Z Z .
IEFEC:pw) P ;p;w)j c JK@®) EFe( s PWHI(P pyW w)dtd(P; W)
ZRT B2 1 Z
c + K 2K Fe( ;P W)jdtd(P; W)
ZDp;w Zjhntj "2k( SPIW) jhntj="21( ;P;W)
c[ JK®j(hnt)?dtHa( ; P; W)d(P; W)
fp:w jhnti "2k ( ;P;W) 7
+ supjFe( ;P W)j JK(©)jdtd(P; W)]
Dpw 2R ihnti=>"2k( :P;W)
Since for any N > 0,
Z Z . Z 4
JK (jdt K@Ojj—j*dt N 2 jK (Ojt?dt
jti=N jti=N N a1

Ra . it2k
Assume that — jK(Djt*“dt < 1, we have

JEPL ipw))  P(piwj 7
chZ [ Ha( ;P;W)d(P; W) + sup jFe( 5 P;W)j",2K] )I(P; W)
Dp:w Dpw 2R
H2|:|.2

=000p;w



(b) Note that V (P( ;p;w)) = 1(Vin  Van), where

YA

Vin = Elhn *(  Mi(—

z0 "

Van = (Elha® M
0

AP pWi o w)]

) 1P Wi w)])?

hn

From part (a), we know the limiting behavior of V. Now, for Vi, since h, ¥ Oasn ¥ 1, there
exist N (p; w) 2 R4 such that for all n > N (p; w),

Z
Vin = Elhn % M(——)d I(Pi piWi w)]
z ° z,%
= hp ? ( Mk( (S PWHIIP piW o w)d d(P; W)
Rd1 Rd2 1 0 hn
Z 212
= (7 MY GPWIP piW o w)d d(P; W)
ZRdl Rdzz i_ Bm
= ( m( NHCPWII(P pW o wyd d(P;W):
Rd1 Rd2 1 hn
Integrating by parts
YA 1
( m( H N PWHIIP pW w)d
va n (MNP pW  w

=B (MCDFC e 3> 1P BW W)
1



Note that

z

Z X Z g X t
. 1 .
m(st) = My (v)dv = Skis ~“kKGydv = Skis K(udu= (1)
B jsi=t <0 Bm SIS jsi=1 0 B
Thus,
2 Z Z3 b
Vin = - K@M ()  csFe( shattPEWHI(P p;W  w)dtd(P; W)
Ck:0 RIL RI2 1 o
jsi=1
Again, integrating by parts, Z 4

K(t) (dt=1=2;
1

R
since 0 ® 1, 11jK(t) (t)jt?*dt < .. Similarto the proof in part (a) with K(t) (t) instead
of K(t),
Vin =P ( ;p;w) + Ru( ;piw;h)

. . R R . .
where jR1k( ;p;w; h)j chﬁk[ Dpiw Hok( ; P;W)d(P; W)+ DIO;Wsup s>r JFe( ;P;W)j"2k2k( P W)YA(P; W).

From part (a),

[EP( ;p;w))P2
= [P( ;p;w) + Ra( ;p;w; h)J?

V2n

. ) R R . .
where jRok( 5 p;w; h)j ch%"[ Dpsw Hok( ; P;W)d(P; W)+ DIO;Wsup s>r JFe( ;P;W)j"2k2k( P W)YA(P; W)].
As a result,

VECPW) = T (Vin Van)

1 2 1
= S PCpw@ PCipw)  —PCipiw)Ra( ipiwih) + —Ru( ;piw;h)

1

CRE(piwih)

where jR1k( ;p;w; h)j and jRok( ;p;w; h)j are lead than or equal to

Z Z
ch2¥[ Hak( ;P;W)d(P; W) + sup jFe( TP W) ,25( Py W)A(P; W):

DP;W Dp;w
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O]

Lemma 1 gives the order of the bias and variance as functions of k. Thus as we increase k, the
speed of decay of bias and variance increases. If we assume f has bounded rst order derivative
with respect to , by applying Taylor’s Theorem, the next lemma provides a more explicit structure
for bias and variance when k = 1.

Lemma 2. For k =1, under Assumption 1-4 and Assumption 5B, we have: (a)

8

=50 R . . : .
EP(;pw)=_ PCPW +3M 1 a puop TOCTPIWIAPIW) +o(hf)  if0< < (piw)

- P( ;p;w)+o(h3) if (p;w)
(0)

8 R

ZEn P PCpw) 20 M gy FOPIW)A(P; W) +o(hy=n)
vV (P( ;P;W)):§ ifo< < (p;w)

- n 'P(;p;w)@  P( ;p;w)) +o(hn=n) if (p; w)
where P( ;p;w) = P( ‘P p;W  w)andP( ;p;w)isde nedin (5). :RBIQ"M M() wm()d .

Proof. (a) Since h, ® 0asn ¥ 1, there exist N(p;w) 2 R4 such that for all n > N (p; w),

z

X _
E(P(;pw)) = E[(nhy) * (0 My ( Ihn AP p;Wi  w)]
z Flz,z
= h, ! My ( h aiP pwW wf( ;P;w)d d(P;W)
R B2 10 n
= hy ! My ( yd f( ;P;w)d d(P; W)
Dpw [0; (P;W)] 0 hn
Z Z Z i

= " M (7)d7F( P;W)d d(P; W)
ZDp;w Z[0§ (P;W)l  Bwm

= M ( X( ;P;W)d d(P;W):
Dpw  [0; (PiW)] hn

We consider 3 cases: (1) 0< < (p;w); 2) > (p;w); (B) = (p;w).
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For case (1),

z z
EFCipw) = v (——)FC IPiW)d d(P;W)
ZDp;w [0; (P§W2] n
= m(——)F( TPiW)d d(P;W)
7 MO @D [0 (BW)] n

= m ( E( S PiW)d d(P;W)
2100 Iy Gw)) [0 (W) i
+ m ( (S PW)d d(P; W)
(F o) (0] i
= A+ Agn:

Note that for the last term, for z < , M(ﬁ) T lasn ¥ 1. By Assumptions 2 and 4,
j M()F( ;P;W)j < 1. BY bebesgue’s dominated conv.424 0 Td [(9776 Tf 4.88 -0.996 Td [(n)]TJ/F15 10.909

f( ;P;W)d d(P;W)

a)



By Taylor’s theorem, F¢( hn ;P;W) = Fe( ;P;W)  hy F( P;W) + 3h2 2FD( ;P W) +
o(h2), Hence

Ain = Eqpn + Eon + Ezp + Egn + 0(h2)

where
Ein = M 2)Fe(C (P WP W)A(P; W)
1([0; YLC ;5 (ewdD) n
Z Z _
Ean = Fe(iPIW) " My()d d(PiW)
1([0: YL (pw)]) —po)
z VA —
Esv = hp f(P;W) " M( ) d d(P; W)
. 1310; YEC ; (pw)]) %
_ 1, Ay b n 2 .
Esm = =h? 72, P;wW) _ Mg() “d d(P;W)
2 1([0: YL (pw)]) —pet
Now,
Ein = M —)Fe( (P;W); PsW)A(P; W)
; H00)LC Gw)D n
P;W)
= M (—— S DFe( (P WP W)A(P; W)
M0 ) n
N w(——FWye  paw): P w)d(P: W)
1w hn

= Ein +E2n
For Ei1.n, note that when (P;W) 2 1([0; )), w T +1 and M(W) T 1as
n ¥ 1. By assumption 2 and assumption 3, j M(%)Ff( (P;W);P;W)j < 4. Thus by
Lebesgue’s dominated convergence theorem we have

z z z

Ein ¥ Fe( (P;W);PiW)A(PiW) = f( ;P;W)d d(P;W):
[0 D [0; D [0; (Psw)]

For Exz.n, note that when (P;W) 2 1((; (mw)]), —™ 1 2 and wm(—)) 1 0as
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R

Nt 1 Asaresult, Ban ¥ g yp¢; g [ Piw))

f( ;P;W)d d(P;W).

. z
Exn = Fe(sPW) 7 Mi()d d(P;w)
HOOLC EwD —Ew
hn
- Fe( ;P; '
o FCGPW) T Mk()d d(PW)
@ ) —EW
z Z_
+ Fe( sPsW) 7 Mg( )d d(P; W)
1 : (pw)]) —e)
= Ez1:n +E2in

. 1 (PW) ¥ Rﬁ [l 1
For Ez1:n, when (P; W) 2 ([0; ), T +1 and ewy M()d ¥ O0asn ¥ 1. For

Ezo.n, When (P;W)RZ (i (p; w)]) — Wy 2 and ™o, Mi()d ¥ lasn ¥ 1.
hn

As a result, Epn, ¥ f( yP;W)Hd d(P; W).

H([0: HEC 5 (pw)]) [0, ]

z Z

hn
h,'Esn = FCPW) T M() dd
10 EC; Gw) —mn



of Mi(?). As a
(p; w),

EP( ;p;w))

2
= Eln + E2rz+ Esn + Esn + Aop + O(hn)

hn

result, NnEan @ 5 81 1 ;o TOC 5P W)A(

10; )) [0; 19 2]TI/F32 7.9701 Tf 3.2910.9091 T 10.9 [(2)] TI/F32 7.9701 TF 0 Y




(b) Note that V (P( ;p;w)) = 1(Vin  Van), where

YA

Vin = Elhn *(  Mi(—

z0 "

Van = (Elha® M
0

AP pWi o w)]

) 1P Wi w)])?

hn

From part (a), we know the limiting behavior of V,,, now for Vi, Since h, ¥ Oasn ¥ 1, there
exist N (p; w) 2 R4 such that for all n > N (p; w),

Z
Vin = E[hn 2( My( F—)d YIPi  pWi  w)]
z °z nz
Dp:w [0, (PW)] 0 n
Z Z z_

= ( Mi(7)d?)?F( ;P;W)d d(P; W)
ZDp;w Z[O; P;W)] Bm

)d )*F( ;P;wW)d d(P;W)

= (m(— )ZE( P;W)d d(P; W)
Dp;w [0; (P;W)] n
Like part (a), we also consider 3 cases when (1) 0< < (p;w); (2) = (p;w); ) = (p;w).
For case (1),
z z

Vin = (
100 YLC ; (ew)D) [0; (PsW)]



R
where Fg( ;P;W) =, f( ;p;w)d . Using integration by parts,

z
2 @F¢( ;P;W)d

Z[O: (P;W)]( u( hn ) @

B [0; (P'W)]( u( hn ))Zde( W)
T z
= (MG dFe( Piw)j S0 Fe( 1PIW)A( m(——))°
n [0; (PZW)] n
= (e Py Piwy + Fe( 1PIW) (M)
hn Mo 0 e hn hn

= (n(— e POPF EWPW) +2 TR iPW) O OMK( )

hn

By Taylor’s s71 Tf -431.923 -40.923 Td [(By)-333(T)83(a)28(ylor’s)-34.60.900r34.60.90m, 6.286 -1.636 Td [(n)]3 -7.



Now,

Zg Zg
M M
Mc( ) m()d = m()d m()
Bm Bm 7
Bm
= m( )%, _omOd ()
Z g, M
=1 m()d m()
Bm
R
As a result, BgM Mk( ) m( )d = 1=2. Therefore,
Z Z
Vion ¥ f( ;P;W)d d(P;W)
HC; ew)D) [05 ]
Similarly, 7
Vizn ¥ 2hp f( ;P;W)d d(P;W)
(s (pw)D

The result then follows. Case (2) and (3) follow similarly.

Lemma 3. Let h, be a sequence of nonstochastic bandwidths such that 0 < hp

1. Given w—m [6/F52 1+TJ —457091 —-17933 T4d 1

0 as n

O]



Then

Since [0

P(;pw)

z

1X i
(nhp) ( M( H YA OIP:  p; Wi
7 i=1 0 n
hn T My( . Yd I(Pi  p;W;i  w)
0 n
zZ
hn 2" MC)ATI(PT W w)
Pn
Z__
hn ! " M()dTI(Pi piWi W)
Bm
hn * m(— DIP pWi w)
n



For 2 B( u(%) %), we have

Pin = iPCipw) P(1;pw)j
1X- i
hn iZlJ M ( hn )

hn *

m (

hn

G

p; Wi



L . . P .
Write jB( ;p;w)  E(P( pw)i =i L) Winj where

Wi, = M(Ihinm(pi Wi w)  EJ M('hn YIP Wi w))

Obviously, E(Win) =0, jWinj 2 since both I(;) and M (:) are less or equal to one. By Bernstein’s
inequality we have

2 1
n & (In?n))

Pf(m(”n))%jrﬁ‘( spiw)  EE(ppiw)i g < 2exp( 27+

Wl
~
Als
=]
|
~
N

with 2 =n 1P-”_ V(Win) ¥ P( ;p;w)(@ P( y;p;w)) by Lemma 1 or 2. Thus 2 2+ 2
n =1 n 1 M 1 M n 3

(nny) 2 H2P( pw)(L P( 1;p;w)), Hence provided that 2 >2P( ;;p;w)(1 P 1;p;w)),

Pan LnPf(m?n))%jﬁ( ipw) EE(pw)i g

< r (hin)% 2exp( In(n)) =r (nh) ?

Therefore, P2n = 05(1) and as a result, sup o wydP( ;W)  EP( ;p;w))i = op(d).

(b) Note that for 21[0; (p;w)],

Z Z
EP(:pw) = m(—
ZDp;w [0; QD,W)] n

= m ( ( ;P;w)d @;wW
1(0; ) [0; (PW)] hn

E( P;W)d d(P;W)




where

Z Z Z Z

Gin = ] M(——)F( ;P;W)d d(P;W) f( ;P;W)d d(P;W)j
7 10 )y [ W) hn ;M) [0 EwW)]

Gon = ] m ( Y ;P;wW)d d(P; W) f( ;P;W)d d(P;W)j
; LF Q) [0 BW) hn , HF 9 [0 BW)

Gsn = ] M(——)F( ;P;W)d d(P;W) f( ;P;W)d d(P;W)j
7 5 (pw)D) 7[0: ] hn (s (ew)]) [05 ]

Gin = ] M(——)F( i PsW)A d(P;W)j

s (ew)) [ (Piw)] n

For the rst term, when (P;W) 2  1([0; )), (P; W) < . This implies M(W) T 1as

n ¥ 1. First, by LDC,

Z Z Z Z

M ( ( ;P;W)d d(P;wW) B f( ;P;W)d d(P;W):
1[0 ) [0 (PwW)] hn 1[0 ) [0 (Pw)]

R R . . .
Second, 1[0: ) [0 (PW)] M(W)f( ;P;W)d d(P; W) is increasing with n. Furthermore, By

the Lipschitz condition imposed on (),

R R
1[0 ) [0: (P:W)] M(ﬁ)f( ;P;W)d d(P; W) is a continuous function in . As a result, by

Dini’s Theorem,

z z z YA

M(Tn)f( P;W)d d(P;W) ¥ (S PyW)d d(P; W)

10; ) [0; (PswW)] 11o; » [0; (PswW)]

uniformly. Thus, sup . (pw); G1n = 0(1). Similarly, we can prove that sup 0. (p:w) G2n = 0(1)
and sup oo, (pw)] Gan = 0(1). For the last term, note when 2 [ ; (P;W)], M(T) L)
Similarly, by LDC and Dini’s theorem, sup 5. (p:wy Gan = 0(1). O

Theorem 1 Proof. First we consider the event set A = ! : j .,(p;w) (p;wW)j = "g.

Given (p;w), provided that  (p;w) is unique, for any * > 0, we have F( (p;w) + "jCpw) =

FC (GWIChw) = FC (prw)  "jCpw). For 1 2 A = fl 1 j n(piw) (W) > g,
n(P;w) > (p;w)+"or a(p;w) < (p;w) . By the monotonicity of F (;jCpw), F( ;n(p;W)jCp,w)

FC (w) +"iCpw) or F( in(piW)Cpw)  F( (W) "jCpw). Let

(psw) =minfF( (p;wW)+"jCpw) F( (PsW)JCphw); F( (BW)jCpw) F(  (psw) "jCpow)g >0
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Theorem 2 Proof. (i) By Mean Value Theorem,

r‘A( :n(p; W)jCpiw) |£( (p; W)jCpiw)

W) (pw) = £ n(p; W)iCpw)

FC (wW)iChw) |£( (p; W)iCp;w)
f\( n(PW) piwv




Gisacompactsetand G (0; (p;w)).

R

] L f( ;P;W)d(P;W
Note that f( ij;W) = L (pg\g]\i\,(f);w) A

. F( jCpw)=1and W:O

since when (P; W) 2 1([0; 1), P; W)

sup if( jCom) F( iCom)i
2G

P _ R
(nhn) 1L M(F)IPE Wi w) 1 @ FCPWIAEIW).

= Su
2(9;J Pew (p; W) ;PW(p:W)
X .
5 ——supj(nhn) * Mi(——)I(Pi pWi W) F( 3Py W)A(P; W)
Prw (p;W) 26 =, M 1((: (pw)])
o sup £ 1Py W)A(P; W)

Ppw (p; W) F5‘pw(|o:W)J 26 1((; (pw)])

; 1 1 —
Since Pow W) Pow o) — 0p(1) by Slutsky theorem,
Z Z
sup f( ;P;W)J(P;W) Bsg d(P; W) =0(1)
2G 5 (pw)D) 5 (pw)D)

by Assumptions 3 and 4.

P
Denote Qn(p;w) = (nhn) *° Ly Mk(5-)1(Pi p;Wi  w), Thus,

Z
sup jQn(p; w) (P, W)A(P; W)j
2G 1 (ew)D
sup jOn(p; W)  E(Qn(p;w))j
2G 7
] (P; W) )
+sup JE(Qn(p; w)) M(hi)f( s PLW)A(P;W)j
2G Dp;w n
Z PIW) Z
+supj (W) e pwdew) £ 1P W)A(P; W)j
26 1((: (w)) hn Y (w)D)



2
nhy ¥ 1. For any (p;w



(b):

EP( (pw);p;w))
EPpw (p; W))
EErw@W)F( (;W)iCow) P (p;w);p;w)
E(Ppw (p; W)) EPpw (p; W))
LPC Giwyipw)  EPC (piw);piw))
EPpw (p; W)) EPpw (p; W))
- WKE(ﬁpw(p;w»F( E:WICh) P (P w);p;w))
+(P( 1(|0;W);|D;W) EFC (p;w); p;w)))]

= ——(Ain + Ao
E@ow (i 2 A

An = F( (PW)iCphw)

we know E(Ppw (p;W)) = Ppw (p;W). A1n = 0. Since given 2 (0;1), (p;w) 2 (0; (p;w)), by
Lemma 2,

z

A= oM & FOC (pw); P;W)A(P; W) + o(2)
L (ew); (pw)D
The result then follows.
(©):
p_ P_ EMPE( (p;w);p;w)) :
Ch = = “W)jCpw
" M E B (W) ( EwWiCu)
_ P EPC (@w);p;w)Pew(;w) P (pw);p;w)
= n( . : . )
E(Ppw (p; W))Ppw (p; W) Prw (p; W)
- Peow (p; W) i=1 "
where
Z .
1 ECC mwripw), o 17w i o
Zln—FFﬁ( Pew (p; W) I(PI p; Wi W) I,Tn 0 Mk( hn )d I(PI p; Wi W))
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Here,

E(Zin) = F%(E(ﬁ( E;w);p;w))  EP( (p;w);p;w)))
=0
X

E(
i=1



2y
E(Z{n) = Sin+S2n+S3n

_ orpy PO EWipw)?
P( (p,;v),p,W> Ppw (p; W)

2hp, f( (p;w); P;W)d(P; W) + o(hn)
W ew); (gw)D

P P
By Liapounov's CLT, I Zins 8 N(0;1) if limpwa oy E(i5 251" ) = 0 for some > 0.

i=1 sn(pw) ~
XE(J Zin_jo+ ) XE(jzij*j i)
-1 sn(p;w) =1 Sn(p; W)

P
Since sn(p; W) = O(1), we just need to prove limpe1 L, E(jZinj?* ) = 0. By C; Inequality,

X ~ [_f,\ . e
EGZini?t ) 2 (n & E(J.E( (Pp\fvp&;vz,v;w))
Z (ow) .
FOnTEGE M IR i W)
n o0 n
_ __E/P TW); ;W) o
= 20 T e ‘pp@pd-”ivf D e pwi w))
z z ’ .
n = w(—PW e prw)d de;w)
Dp;w [0; (P;W)] hn

IPi  piW;  w)j?t)

i=1

Since E(AI(P;  p;W;  w) =0(),

2= p ECC @wWipwW) on  _ 2= JECC (Piw)ipiw))i?
Pew (p;w) Ppw (p; w)?*
= O(n =)

n

Since m() 1, f <Bfand B,

z Z _
n = (6w dPiw)
D?w [O;Z(P:W)] n
n = Bf d d(P; W)
ZDp;w [0; (P;W)]

n 2= Bf
1o 1 f



The result then follows.

(i) Note that in the proof of part (i), Ay =
by Lemma 1,

% + . . —
E@ow o) (A1n + Agzp) is the bias term and A, = 0.

Aani = JPC Apwypw) EFEC (piw)ipiw))i,
Rl Ha Grw)iPIWIAPIW) - supiFe( i PIW)I"C( (piw); P W)A(P W)

The result then follows. O
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