The documents distributed here have been provided as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.听
The slides and posters are licensed to me under .

Edited Series

  • Chen, C., D. Cooley, J. Runge, and E. Szekely, (Eds.),听I. Ebert-Uphoff, D. Hammerling, C. Monteleoni, D. Nychka (Series Eds.),听. NCAR Technical Note NCAR/TN-550+PROC, 2018, 151 pp, doi:10.5065/D6BZ64XQ.
  • V. Lyubchich, N.C. Oza, A. Rhines, E. Szekely (Eds.), I. Ebert-Uphoff, C. Monteleoni, D. Nychka (Series Eds.), . NCAR Technical Note NCAR/TN-536+PROC, Sept 2017, doi: 10.5065/D6222SH7.
  • A. Banerjee,听W. Ding, J. Dy, S. Lyubchich, A. Rhines (Eds.), I. Ebert-Uphoff, C. Monteleoni, D. Nychka (Series Eds.),听.听NCAR Technical Note NCAR/TN-529+PROC, September 2016, 159 pages, doi: 10.5065/D6K072N6, ISBN: 978-0-9973548-1-2.

Book Chapters

  • S. McQuade and C.Monteleoni, 鈥,鈥 Chapter 3, in Large-Scale Machine Learning in the Earth Sciences, Srivastava, Nemani, Steinhaeuser (Eds.), Data Mining and Knowledge Discovery Series, V. Kumar (Series Ed.), Chapman & Hall/CRC, pp. 33鈥54, August 2017. Invited.
  • C. Tang and C. Monteleoni,听鈥,鈥澨齣n Regularization, Optimization, Kernels, and Support Vector Machines. Johan A. K. Suykens, Marco Signoretto, and Andreas Argyriou. (Eds.), CRC Press, Taylor & Francis Group. Chapter 7, pp. 159鈥175, 2014.听听Invited.听
  • C. Monteleoni,听,听F. Alexander, A. Niculescu-Mizil, K. Steinhaeuser,听,听, M.B. Blumenthal, A.R. Ganguly, J.E. Smerdon, and M. Tedesco,听鈥Climate Informatics,鈥澨齣n听Computational Intelligent Data Analysis for Sustainable Development; Data Mining and Knowledge Discovery Series. Yu, T., Chawla, N., and Simoff, S. (Eds.), CRC Press, Taylor & Francis Group. Chapter 4, pp. 81鈥126, 2013.听听Invited.

Journals & Periodicals

  • L. Alexander, S. Das, Z. Ives, H.V. Jagadish, and C. Monteleoni, 鈥淩esearch Challenges in Financial Data Modeling and Analysis.鈥 In Big Data, Sep 2017, 5(3): 177-188.
  • R. L. Glicksman, D. L. Markell, and C. Monteleoni,听鈥淭echnological Innovation, Data Analytics, and Environmental Enforcement,鈥澨齣n Ecology Law Quarterly, University of California, Berkeley, School of Law, Volume 44, Issue 1, 2017.听听Invited.听
  • ,听K. Choromanski,听,听and C. Monteleoni,听鈥淒ifferentially-Private Learning of Low Dimensional Manifolds,鈥澨齣n Theoretical Computer Science (TCS), Volume 620, pp. 91鈥104, March 2016.听听Invited.听
  • C. Tang and C. Monteleoni,听鈥淐an Topic Modeling Shed Light on Climate Extremes?鈥澨齣n听IEEE Computing in Science and Engineering (CISE) Magazine, Special Issue on Computing & Climate. Vol. 17, no. 6, pp. 43鈥52,听Nov./Dec.听2015.听
  • C. Monteleoni,听,听S. McQuade,听鈥淐limate Informatics: Accelerating Discovery in Climate Science with Machine Learning,鈥澨齣n听IEEE Computing in Science and Engineering (CISE) Magazine, Special Issue on Machine Learning. Vol. 15, no. 5, pp. 32鈥40,听Sept.-Oct.听2013.听听Invited.
  • C. Monteleoni,听,听S. Saroha, and E. Asplund,听鈥淭racking Climate Models,鈥澨齣n听Journal of听Statistical Analysis and Data Mining:听 Special Issue: Best of CIDU 2010. Volume 4, Issue 4, pp. 72鈥392, August 2011.听听Invited.
  • , C. Monteleoni, and听,听鈥淒ifferentially Private Empirical Risk Minimization,鈥澨齣n听Journal of Machine Learning Research (JMLR),听12(Mar):1069鈥1109, 2011.听听
  • ,听, and C. Monteleoni, 鈥淎nalysis of Perceptron-Based Active Learning,鈥澨齣n听Journal of Machine Learning Research (JMLR), 10(Feb):281鈥
    299, 2009.听

Refereed Proceedings

  • S. Giffard-Roisin, M. Yang, G. Charpiat, B. K茅gl, and C. Monteleoni, 鈥淔used Deep Learning for Hurricane Track Forecast From Reanalysis Data.鈥 In Proceedings of the 8th International Workshop on Climate Informatics (CI), 2018.
  • M. Mohan and听C. Monteleoni,听听鈥淏eyond the听Nystr枚m听approximation: Speeding up spectral clustering using uniform sampling and weighted kernel听k-means,鈥 in Proceedings of the 26th International Joint Conference on Artificial Intelligence听(IJCAI), 2017.
  • M. Mohan and听C. Monteleoni,听听鈥淓xploiting Sparsity to Improve the Accuracy of Nystr枚m-based Large Scale Spectral Clustering,鈥 in Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), 2017.
  • C. Tang and听C. Monteleoni,听听鈥淐onvergence rate of stochastic听k-means,鈥澨齣n Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.听
  • S. McQuade and听C. Monteleoni,听听鈥淥nline learning of volatility from multiple option term lengths,鈥澨齣n听Proceedings of听the International Workshop on Data Science for Macro-Modeling with Financial and Economic Datasets (DSMM 2016), International Conference on Management of Data (SIGMOD/PODS), 2016.听
  • C. Tang and听C. Monteleoni,听听鈥淥n Lloyd's algorithm: new theoretical insights for clustering in practice,鈥澨齣n Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 2016.听
  • S. McQuade and听C. Monteleoni,听听鈥淢ulti-Task Learning from a Single Task: Can Different Forecast Periods be Used to Improve Each Other?鈥澨齣n听Proceedings of听, 2015.听听
  • M. Mohan, C. Tang, C. Monteleoni,听, and听,听听鈥淪easonal Prediction Using Unsupervised Feature Learning and Regression,鈥澨齣n听Proceedings of听, 2015.听听
  • , C. Monteleoni, S. McQuade,听,听,听and听,听听鈥淭racking Seasonal Prediction Models,鈥澨齣n Proceedings of听, 2015.听听
  • C. Tang and C. Monteleoni,听听鈥淒etecting Extreme Events from Climate Time-Series via Topic Modeling,鈥澨齣n Machine Learning and Data Mining Approaches to Climate Science: Proceedings of the 4th International Workshop on Climate Informatics. Lakshmanan, V., Gilleland, E., McGovern, A., Tingley, M. (Eds.), Springer, 2015.听听
  • M. Mohan, D.听G谩lvez-L贸pez, C. Monteleoni, and G. Sibley,听鈥淓nvironment Selection And Hierarchical Place Recognition,鈥澨齣n Proceedings of the 2015 IEEE International Conference on Robotics听and Automation (ICRA), 2015.听
  • , C. Monteleoni, and K. Pillaipakkamnatt,听听鈥淎 Semi-Supervised Learning Approach to Differential Privacy,鈥澨齣n Proceedings of the 2013 IEEE International Conference on Data Mining Workshops (ICDMW), IEEE Workshop on Privacy Aspects of Data Mining (PADM), 2013.听
  • ,听, H. Kim, M. Mohan, and C. Monteleoni,听听鈥淔ast spectral clustering via the Nystr枚m method,鈥澨齣n Algorithmic Learning Theory, 24th International Conference听(ALT), 2013.听
  • ,听K. Choromanski,听,听and C. Monteleoni,听鈥淒ifferentially-Private Learning of Low Dimensional Manifolds,鈥澨齣n Algorithmic Learning Theory, 24th International Conference听(ALT), 2013.听
  • M. Ghafarianzadeh and C. Monteleoni,听听鈥淐limate Prediction via Matrix Completion,鈥澨齣n Proceedings of the Twenty-Seventh Conference on Artificial Intelligence (AAAI),听Late-Breaking Papers Track,听2013.听
  • S. McQuade and C. Monteleoni,听听鈥淕lobal Climate Model Tracking using Geospatial Neighborhoods,鈥澨齣n Proceedings of the Twenty-Sixth Conference on Artificial Intelligence (AAAI),听Computational Sustainability and AI Special Track,听2012.听
  • 听and C. Monteleoni,听听鈥淥nline Clustering with Experts,鈥澨齣n the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS), 2012.听
  • 听and C. Monteleoni,听听鈥淥nline Clustering with Experts,鈥澨齣n Proceedings of ICML 2011 Workshop on Online Trading of Exploration and Exploitation 2; Journal of Machine Learning Research (JMLR) Workshop and Conference Proceedings, 2012.听
  • C. Monteleoni,听, and听S. Saroha,听鈥淭racking Climate Models,鈥澨齣n NASA Conference on Intelligent Data Understanding (CIDU), 2010.听听Awarded Best Application Paper.听
  • ,听, and C. Monteleoni, 鈥淪treaming听k-means approximation,鈥澨齣n Advances in Neural Information Processing Systems (NIPS), 2009.
  • 听and C. Monteleoni, 鈥淧rivacy-preserving logistic regression,鈥澨齣n Advances in Neural Information Processing Systems (NIPS), 2008.
  • ,听, and C. Monteleoni, 鈥淎 general agnostic active learning algorithm,鈥澨齣n Advances in Neural Information Processing Systems (NIPS), 2007.
  • C. Monteleoni and听, 鈥淧ractical听Online Active Learning for Classification,鈥澨齣n听Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,听Online Learning for Classification Workshop,听(CVPR), 2007.
  • C. Monteleoni,听"Efficient Algorithms for General Active Learning,"听in Proceedings of the 19th Annual Conference on Learning Theory, Open Problems, (COLT), 2006.
  • ,听, and C. Monteleoni, 鈥淎nalysis of perceptron-based active learning,鈥
    听in听Proceedings of the听18th Annual Conference on Learning Theory (COLT), 2005.
  • C. Monteleoni and听, 鈥淥nline Learning of Non-stationary Sequences,鈥澨齣n Advances in Neural Information Processing Systems (NIPS) 16, 2003.
  • C. Boutilier, M. Goldszmidt, C. Monteleoni, and B. Sabata, "Resource Allocation using Sequential Auctions,"听in Agent-Mediated Electronic Commerce II, Lecture Notes in Artificial Intelligence 1788. Springer-Verlag, 2000.听
  • A. Kehler, J.R. Hobbs, D. Appelt, J. Bear, M. Caywood, D. Israel, M. Kameyama, D. Martin, and C. Monteleoni,听"Information Extraction, Research and Applications: Current Progress and Future Directions,"听in TIPSTER Text Program Phase III Proceedings, 1999.听

Workshop Papers听

  • S. Giffard-Roisin, M. Yang, G. Charpiat, B. K茅gl, and C. Monteleoni, "Deep Learning for Hurricane Track Forecasting from Aligned Spatio-temporal Climate Datasets," in ,听NIPS 2018.
  • C. Tang and C. Monteleoni, 鈥淒emystifying wide nonlinear auto-encoders: fast SGD convergence towards sparse representation from random initialization.鈥 In Workshop for Women in Machine Learning, collocated with NIPS 2017.
  • C. Tang and C. Monteleoni,听听鈥淭he convergence rate of stochastic听k-means,鈥澨齣n听, ICML 2016.
  • C. Tang and C. Monteleoni,听听鈥淥n Lloyd's algorithm: new theoretical insights for clustering in practice,鈥澨齣n听, NIPS 2015.
  • C. Tang and C. Monteleoni,听听鈥淪calable constant听k-means approximation via heuristics on well-clusterable data,鈥澨齣n听, NIPS 2015.
  • C. Tang and C. Monteleoni,听听鈥淪caling up Lloyd鈥檚 algorithm: stochastic and parallel block-wise optimization perspectives,鈥澨齣n the 7th NIPS Workshop on Optimization for Machine Learning (), NIPS 2014.
  • S. McQuade and C. Monteleoni,听听鈥淢RF-Based Spatial Expert Tracking of the Multi-Model Ensemble,鈥澨齣n New Approaches for Pattern Recognition and Change Detection, session at American Geophysical Union (AGU) Fall Meeting, 2013.听听
  • M. Ghafarianzadeh and C. Monteleoni,听听鈥淐limate Prediction via Matrix Completion,鈥澨齣n Workshop on Machine Learning for Sustainability, NIPS 2013.听听
  • M. Ghafarianzadeh and C. Monteleoni,听听鈥淐limate Prediction via Matrix Completion,鈥澨齣n听Workshop for Women in Machine Learning (WiML), collocated with听NIPS听2013.听听
  • C. Tang and C. Monteleoni,听听鈥淐onvergence analysis of stochastic gradient descent on strongly convex objective functions,鈥澨齣n听Workshop for Women in Machine Learning (WiML), collocated with听NIPS听2013.听听
  • S. McQuade and C. Monteleoni,听听鈥淢RF-Based Spatial Expert Tracking of the Multi-Model Ensemble,鈥澨齣n听, 2013.听听
  • M. Ghafarianzadeh and C. Monteleoni,听听鈥淐limate Prediction via Matrix Completion,鈥澨齣n听, 2013.听听
  • C. Tang and C. Monteleoni,听听鈥淐onvergence analysis of stochastic gradient descent on strongly convex objective functions,鈥澨齣n听听(ROKS), 2013.听听
  • S. McQuade and C. Monteleoni,听听鈥淕lobal Climate Model Tracking using Geospatial Neighborhoods,鈥澨齣n听, 2012.听听
  • S. McQuade and C. Monteleoni,听听鈥淕lobal Climate Model Tracking using Geospatial Neighborhoods,鈥澨齣n听, 2012.听听
  • 听and C. Monteleoni,听听鈥淥nline Clustering with Experts,鈥澨齣n听, 2012.听听
  • 听and C. Monteleoni,听听鈥淥nline Clustering with Experts,鈥澨齣n听Workshop for Women in Machine Learning (WiML), collocated with听NIPS 2011.听
  • , C. Monteleoni, and Krishnan Pillaipakkamnatt听,听听鈥淎 Semi-Supervised Learning Approach to Differential Privacy,鈥澨齣n听Workshop for Women in Machine Learning (WiML),听collocated with听NIPS 2011.听
  • 听and C. Monteleoni,听听鈥淥nline Clustering with Experts,鈥澨齣n the Sixth Annual Machine Learning Symposium, New York Academy of Sciences, 2011.听听Student Paper Award, Third Place.
  • 听and C. Monteleoni,听听鈥淥nline Clustering with Experts,鈥澨齣n听, ICML 2011.听听
  • C. Monteleoni,听S. Saroha,听and听,听听鈥淭racking Climate Models,鈥澨齣n听, 2010.听听
  • C. Monteleoni,听S. Saroha,听and听,听听鈥淐an machine learning techniques improve forecasts?鈥澨齣n Intergovernmental Panel on Climate Change (IPCC) Expert Meeting on Assessing and Combining听Multi Model Climate Projections, Boulder, 2010.
  • C. Monteleoni,听S. Saroha,听and听,听听鈥淭racking Climate Models,鈥澨齣n Workshop on Temporal Segmentation: Perspectives from Statistics, Machine Learning, and Signal Processing, NIPS 2009.听
  • H. Dutta, D. Waltz, A. Moschitti, D. Pighin, P. Gross, C. Monteleoni,听A. Salleb-Aouissi, A. Boulanger, M. Pooleery, and R. Anderson,听鈥淓stimating the Time Between Failures of Electrical Feeders in the New York Power Grid,鈥澨齣n Next Generation Data Mining Summit, 2009.
  • ,听, and C. Monteleoni, 鈥淥ne-pass approximate听k-means optimization,鈥澨齣n Workshop on On-line Learning with Limited Feedback, ICML/UAI/COLT 2009.
  • C. Monteleoni,听,听, and听,听鈥淩eal-Time Prediction Using Online Learning: Application to Energy Management in Wireless Networks.鈥澨齣n Forum on Analytics, San Diego, 2007.听听Long version:听鈥淢anaging the 802.11 Energy/Performance Tradeoff with Machine Learning,鈥澨齣n MIT-LCS-TR-971听Technical Report, MIT Computer Science and Artificial Intelligence Lab, 2004.
  • ,听, and C. Monteleoni,听鈥淎 general agnostic active learning algorithm,鈥澨齣n听Workshop for Women in Machine Learning (WiML), Orlando, 2007.听
  • C. Monteleoni and听,听"Active Learning under Arbitrary Distributions"听in听,听NIPS 2005.

Theses