Publications, Data and Tools

Our group strives to publish our results in open access journals and to make datasets and software tools available to the community. Note that currently, it is not possible for all publications to provide open access. Thus, if you are unable to access one of our articles, please contact us individually and we will arrange it to be shared with you.

* Ice sheets and Climate group members in bold*

Publications

 

In Review

N. WeverE. Keenan, C. Amory, M. Lehning, A. Sigmund, H. Huwald, and J. T. M. Lenaerts. New snow density in the drifting snow dominated environment of Antarctica. J. Glac., in review.

M. L. Maclennan, J. T. M. Lenaerts, C. Shields, and J. D. Wille. Contribution of atmospheric rivers to Antarctic Ice Sheet snowfall. GRL, in review. 

M. L. Maclennan, J. T. M. Lenaerts, C. A. Shields, A. O. Hoffman, N. Wever, M. Thompson-Munson, A. C. Winters, E. C. Pettit, T. A. Scambos, and J. D. Wille. Climatology and Surface Impacts of Atmospheric Rivers on West Antarctica. The Cryosphere, in revision.

Clercx, N., Machguth, H., Tedstone, A., Jullien, N., Wever, N., Weingartner, R., Roessler, O.: In situ measurements of meltwater flow through snow and firn in the accumulation zone of the SW Greenland Ice Sheet, EGUsphere [preprint], doi: .

E. Keenan, Wever, N., Lenaerts, J. T. M., and Medley, B.: A wind-driven snow redistribution module for Alpine3D v3.3.0: Adaptations designed for downscaling ice sheet surface mass balance, Geosci. Model Dev., in revision.

B. Medley, J. T. M. Lenaerts, M. Dattler, E. Keenan, N. Wever. Sub-grid-scale surface processes reduce Antarctic surface mass balance and confound interpretation of height changes. GRL, in review.

 

Published

2022

B. P. Y. Noel, J. T. M. Lenaerts , W. H. Lipscomb , K. Thayer-Calder , M. R. van den Broeke. Peak refreezing in the Greenland firn layer under future warming scenarios. Nature Comms., accepted. 

J. Ryan, L. Smith, S. Cooley, B. Pearson, N. Wever, E. Keenan, and J. T. M. Lenaerts: Decreasing surface albedo signifies a growing importance of clouds for Greenland Ice Sheet meltwater production. Nature Communications, 13, 4205,

C. Stokes, N. Abram , M. Bentley , T. Edwards , M. England , S. Jamieson , R. Jones , M. King , J. T. M. Lenaerts , B. Medley , B. Miles , G. Paxman , C. Ritz , T. van de Flierdt , P. Whitehouse , A. Foppert. Response of the East Antarctic Ice Sheet to Past and Future Climate Change. Nature, 608, 275鈥286.

M. Cavitte, H. Goosse. S. Wauthy, T. Kausch, J.-L. Tison, B. Van Liefferinge, F. Pattyn, J. T. M. Lenaerts, P. Claeys. 鈥婩rom ice core to ground-penetrating radar: representativeness of SMB at three ice rises along the Princess Ragnhild Coast, East Antarctica. J. Glac., 1-13. doi:10.1017/jog.2022.39.

Dunmire, D., Lenaerts, J. T. M., Datta, R. T., and Gorte, T.: Antarctic surface climate and surface mass balance in the Community Earth System Model version 2 (1850鈥2100), The Cryosphere, accepted.

Michel, A., Schaefli, B., Wever, N., Zekollari, H., Lehning, M., and Huwald, H.: Future water temperature of rivers in Switzerland under climate change investigated with physics-based models, Hydrol. Earth Syst. Sci., 26, 1063鈥1087, doi: .

2021

K. Alley, C. Wild, A. Luckman, S. Child, C. Hulen, E. Pettit, A. Muto, T. A. Scambos, M. Truffer, B. Wallin, M. Klinger, T. Sutterley, L. Girod, J T. M. Lenaerts, M. Maclennan, E. Keenan, D. Dunmire. Two decades of dynamic change and progressive destabilization on the Thwaites Eastern Ice Shelf. The Cryosphere, in press.

A. Bourbonnais, S. Ling Ho, C. Kinnard, J. T. M. Lenaerts, S. Sugiyama, and M. A. Altabet. Global change on the Blue Planet. Commun Earth Environ 2, 163, https://doi.org/10.1038/s43247-021-00227-2

M. Maclennan and J. T. M. Lenaerts. Large-Scale Atmospheric Drivers of Snowfall over Thwaites Glacier, Antarctica. Geophys. Res. Lett., 48, 17, https://doi.org/10.10292021GL093644

R. Sellevold, J. T. M. Lenaerts, and M. Vizcaino.  Influence of Arctic sea-ice loss on the Greenland ice sheet climate. Clim. Dyn., https://doi.org/10.1007/s00382-021-05897-4

M. L. Ghiz, R. C. Scott, A. M. Vogelmann, J. T. M. Lenaerts, M. Lazzara, and D. LubinEnergetics of Surface Melt in West Antarctica. The Cryosphere, 15, 3459鈥3494, https://doi.org/10.5194/tc-15-3459-2021

D. Dunmire, A. F. Banwell, N. Wever, J. T. M. Lenaerts, and R. T. Datta: Contrasting regional variability of buried meltwater extent over 2 years across the Greenland Ice Sheet, The Cryosphere, 15, 2983鈥3005, .

N. Wever, K. Leonard, T. Maksym, S. White, Proksch, M. and J. T. M. Lenaerts. Spatially distributed simulations of the effect of snow on mass balance and flooding of Antarctic sea ice. Journal of Glaciology, 1-19. doi:10.1017/jog.2021.54

L. Muntjewerf, W. J. Sacks, M. Lofverstrom, J. Fyke, W. H. Lipscomb, C. Ernani da Silva, M. Vizcaino, K. Thayer-Calder, J. T. M. Lenaerts, and R. Sellevold. Description and demonstration of the coupled Community Earth System Model v2 - Community Ice Sheet Model v2 (CESM2-CISM2). J. Adv, Mod. Syst., 13, 6, https://doi.org/10.1029/2020MS002356

J. D. Wille, V. Favier, I. V. Gorodetskaya, C. Agosta, C. Kittel, J. C. Beeman, N. Jourdain, J. T. M. Lenaerts, F. CodronAntarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res.-Atmospheres, 126, 8, e2020JD033788,  (contact Jan Lenaerts to obtain a copy)

J. M. van Wessem, Steger, C. R., Wever, N., and van den Broeke, M. R. An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979鈥2016, Cryosphere, 15, 695鈥714, doi: .
 
E. Keenan, N. Wever, M. Dattler, J. T. M. Lenaerts, B. Medley, P. Kuipers Munneke, and C. Reijmer. Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density. The Cryosphere, 15, 1065鈥1085, 2021, https://doi.org/10.5194/tc-15-1065-2021.
 
L. van Kampenhout, B. No毛l, M. R. van den Broeke, W. J. van de Berg, and J. T. M. Lenaerts. A 21st century warming threshold for irreversible Greenland ice sheet mass loss. Geophys. Res. Lett., 48, e2020GL090471, .

2020

N. Montgomery, C. Mi猫ge, J. Miller, T. A. Scambos, B. Wahlin, O. Miller, K. Solomon, R. Forster, L. Koenig. Hydrologic Properties of a Highly Permeable Firn Aquifer in the Wilkins Ice Shelf, Antarctica. Geophys. Res. Lett., 47, e2020GL089552, .

T. Gorte, J. T. M. Lenaerts, B. Medley. Scoring Antarctic surface mass balance in climate models to refine future projections. The Cryosphere, 14, 4719鈥4733, .

M. G. P. Cavitte, Q. Dalaiden, H. Goosse, J. T. M. Lenaerts, and E. Thomas. Reconciling the surface temperature鈥搒urface mass balance relationship in models and ice cores in Antarctica over the last two centuries. The Cryosphere, 14, 4083鈥4102, 2020, 

Q. Dalaiden, H. Goosse, J. T. M. Lenaerts, M. Cavitte, and N. Henderson. Mean state and future trends of Antarctic snow accumulation dominated by atmospheric synoptic-scale events. Commun. Earth Environ., 1, 62.

T. Kausch, S. Lhermitte, J. T. M. LenaertsN. Wever, M. Inoue, F. Pattyn, S. Sun, S. Wauthy, J.-L. Tison, W. J. van de Berg. Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling. The Cryosphere, 14, 3367鈥3380, 

X. Fettweis, S. Hofer, .... J. T. M. Lenaerts, and others. GrSMBMIP: Intercomparison of modelled 1980-2012 surface mass balance over the Greenland Ice sheet. The Cryosphere, 14, 3935鈥3958, 

J. T. M. Lenaerts, D. Camron, C. Wyburn-Powell, and J. E. Kay. Present-day and future Greenland Ice Sheet precipitation frequency from CloudSat observations and the Community Earth System Model. The Cryosphere, 14, 2253鈥2265, 

D. Schneider, J. Kay, J. T. M. Lenaerts, and C. Deser. Improved clouds over Southern Ocean amplify Antarctic precipitation response to ozone depletion in an Earth system model. Climate Dynamics, 55, 1665-1684. doi:

D. Dunmire, J. T. M. Lenaerts, A. F. Banwell, N. Wever, J. Shragge, S. Lhermitte, R. Drews, F. Pattyn, I. C. Willis, J. Miller, and E. Keenan.  Observations of subsurface lake drainage on the Antarctic Ice Sheet. Geophys. Res. Lett.,  47, e2020GL087970. 

Scambos, T. and S. Stammerjohn, Eds., 2020: Antarctica and the Southern Ocean [in 鈥淪tate of the Climate in 2019"]. Bull. Amer. Meteor. Soc., 101 (8), S287鈥揝320, . (authors include J. T. M. Lenaerts, E. Keenan, T. Gorte, and M. Maclennan)

A. Gossart, N. Souverijns, S. P. Palm, J. T. M. Lenaerts, S. Lhermitte, I. V. Gorodetskaya, and N. P. M. van Lipzig. Importance of Blowing Snow During Cloudy Conditions in East Antarctica: Comparison of Ground-Based and Space-Borne Retrievals Over Ice-Shelf and Mountain Regions. Front. Earth Sci., 08 July 2020 | 

Qu茅no, L., Fierz, C., van Herwijnen, A., Longridge, D., and Wever, N. Deep ice layer formation in an alpine snowpack: monitoring and modeling, Cryosphere, 14, 3449鈥3464, .

M. Izeboud, S. Lhermitte, K. van Tricht, J. T. M. Lenaerts, N. van Lipzig and N. Wever. Spatiotemporal variability of cloud radiative effects on the Greenland Ice Sheet surface mass balance. Geophys. Res. Lett.,  47, e2020GL087315. 

Jafari, M., Gouttevin, I., Couttet, M., Wever, N., Michel, A., Sharma, V., Rossmann, L., Maa脽, N., Nicolaus, M. and Lehning, M. The Impact of Diffusive Water Vapor Transport on Snow Profiles in Deep and Shallow Snow Covers and on Sea Ice, Front. Earth Sci. 8:249. .

L. Muntjewerf, M. Petrini, M. Vizcaino, C. Ernani da Silva, R. Sellevold, M. Scherrenberg, K. Thayer-Calder, S. L. Bradley, J. T. M. Lenaerts, W. Lipscomb, M. Lofverstrom. Greenland Ice Sheet contribution to 21st century sea level rise as simulated by the coupled CESM2.1-CISM2.1. Geophys. Res. Lett., 

J. T. M. Lenaerts, A. Gettelman, L. van Kampenhout, K. van Tricht, and N. Miller. Impact of cloud physics on the Greenland Ice Sheet surface climate: a study with the Community Atmosphere Model. J. Geophys. Res. - Atmospheres, 125, e2019JD031470, 

B. No毛l, L. van Kampenhout, W. J. van de Berg, J. T. M. Lenaerts, W. J. van de Berg, B. Wouters, M. R. van den Broeke. Brief communication: CESM2 climate forcing (1950-2014) yields realistic Greenland ice sheet surface mass balance and recent trends. The Cryosphere, 14, 1425鈥1435, 2020, 

B. Hamlington, ...., J. T. M. Lenaerts, and others. Understanding of Contemporary Regional Sea Level Change and the Implications for the Future. Rev. Geophys., .

Q. Dalaiden, H. Goosse, F. Klein, J. T. M. Lenaerts, M. Holloway, L. Sime and E. Thomas. Surface Mass Balance of the Antarctic Ice Sheet and its link with surface temperature change in model simulations and reconstructions. The Cryosphere, 14, 1187鈥1207, .

S. Tilmes, D. E. MacMartin, J. T. M. Lenaerts, L. van Kampenhout, L. Muntjewerf, L Xia, C. S. Harrison, K. M. Krumhardt, M. M. Mills, B. Kravitz, and A. Robock. Stratospheric aerosol geoengineering experiments reaching 1.5掳C and 2.0掳C temperature targets. Earth Syst. Dynam., 11, 579鈥601, 2020. 

N. Montgomery, L. Koenig, J. T. M. Lenaerts, P. Kuipers Munneke. Annual accumulation rates (2009-2017) in Southeast Greenland derived from airborne snow radar and comparison with regional climate models. Ann. Glac., 鈥

H. Wang, J. Fyke, J. T. M. Lenaerts, J. M. Nusbaumer, H. Singh, D. Noone, and P. J. Rasch. Influence of Sea Ice Anomalies on Antarctic Precipitation and its Source Attribution in the Community Earth System Model. The Cryosphere, 14, 429鈥444, 

G. Danabasoglu, J.-F. Lamarque,..., J. T. M. Lenaerts, and others. The Community Earth System Model version 2. JAMES,

Wever, N., Rossmann, L., Maa脽, N., Leonard, K. C., Kaleschke, L., Nicolaus, M., and Lehning, M. Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model, Geosci. Model Dev., 13, 99鈥119, .

L. van Kampenhout,  J. T. M. Lenaerts, W. Lipscomb, M. Vizcaino, S. Lhermitte, W. Sacks and M. R. van den Broeke. Greenland ice sheet climate and surface mass balance in CESM2. J. Geophys. Res - Earth Surface,  

2019

M. Dattler, J. T. M. Lenaerts, B. Medley. Significant spatial variability in radar-derived West Antarctic accumulation linked to surface winds and topography. Geophys. Res. Lett. ,

R. Sellevold, L. van Kampenhout, J. T. M. Lenaerts, B. No毛l, W. H. Lipscomb, and M. Vizcaino. Ice sheet surface mass balance downscaling through elevation classes in an Earth System Model. The Cryosphere, 13, 3193鈥3208, https://doi.org/10.5194/tc-13-3193-2019

D. Lawrence, ...., J. T. M. Lenaerts, and 50 others. The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. JAMES,

Hirashima, H., Avanzi, F., and Wever, N.Wet鈥恠now metamorphism drives the transition from preferential to matrix flow in snow. Geophys. Res. Lett., 46, 14548鈥14557, .

A. Gossart, S. Helsen, J. T. M. Lenaerts, S. Vanden Broucke, N. van Lipzig and N. Souverijns. An evaluation of surface climatology in state-of-the-art reanalyses over the Antarctic Ice Sheet. J. Clim., 32, 6899鈥6915, 

J. T. M. Lenaerts, B. Medley, M. R. van den Broeke and B. Wouters, 2019. Observing and modeling past, present and future ice sheet surface mass balance. Reviews of Geophysics, 57, .

L. van Kampenhout, A. M. Rhoades, C. M. Zarzycki, A. R. Herrington, W. J. Sacks, J. T. M. Lenaerts, and M. R. van den Broeke, 2019. Regional Grid Refinement in an Earth System Model: Impacts on the Simulated Greenland Surface Mass Balance. The Cryosphere, 13, 1547鈥1564, https://doi.org/10.5194/tc-13-1547-2019.

N. Souverijns, A. Gossart, M. Demuzere, J. T. M. Lenaerts, I. V. Gorodetskaya, S. Vanden Broucke, N. P. M. Van Lipzig, 2019. A New Regional Climate Model for POLAR鈥怌ORDEX: Evaluation of a 30鈥怸ear Hindcast with COSMO鈥怌LM2 Over Antarctica. Journal of Geophysical Research: Atmospheres,&苍产蝉辫;124,&苍产蝉辫;1405鈥&苍产蝉辫;1427.&苍产蝉辫;

R. T. Datta, M. Tedesco, X. Fettweis, C. Agosta, S. Lhermitte, J. T. M. Lenaerts and N. Wever. The Effect of Foehn-Induced Surface Melt on Firn Evolution over the Northeast Antarctic Peninsula, Geophys. Res. Lett., 46,  3822鈥 3831.  (work partly performed during Datta's research visit to our group in Summer '18)

H. Zekollari, S. Goderis, M. van Ginneken, J. Gattacceca, ASTER Team, A. J. T. Jull, A. Yamaguchi, P. Huybrechts, V. Debaille, J. T. M. Lenaerts, and P. Claeys, 2019. Unravelling the high-altitude Nansen blue ice field meteorite trap (East Antarctica) and implications for regional palaeo-conditions. Geochimica et Cosmochimica Acta, 248, 289-310, doi: 

C. Agosta, X. Fettweis, A. Orsi, C. Kittel, C. Amory, H. Gallee, V. Favier, M. R. van den Broeke, J. T. M. Lenaerts, J. M. van Wessem, 2019. Estimation of the Antarctic surface mass balance using MAR (1979-2015) and identification of dominant processes.  The Cryosphere, 13, 281-296, https://doi.org/10.5194/tc-13-281-2019.

2018

F. Pattyn, C. Ritz , X. Asay-Davis, R. DeConto , G. Durand, L. Favier, X. Fettweis, H. Goelzer, N. Golledge, E. Hanna, P. Kuipers Munneke, J. T. M. Lenaerts, S. Nowicki, A. Payne, A. Robinson, H. Seroussi, L. Trusel, M. van den Broeke, 2018. Greenland and Antarctic ice sheets under 1.5掳C global warming. Nature Climate Change, 8, 1053鈥1061, https://doi.org/10.1038/s41558-018-0305-8

J. T. M. Lenaerts, J. Fyke, B. Medley. The signature of ozone depletion in recent Antarctic precipitation change: a study with the Community Earth System Model, 2018. Geophys. Res. Lett., 45, 23, https://doi.org/10.1029/2018GL078608

J. Fyke, O. Sergienko, M. L枚fverstr枚m, S. Price and J. T. M. Lenaerts, 2018. An overview of interactions and feedbacks between ice sheets and the Earth system. Rev. Geophys., 56, 2, 361-408, doi: 

L. Woelders, J. T. M. Lenaerts, K. Hagemans, K. Akkerman, T. van Hoof, W. Hoek, 2018. Drastic ecological response to recent rapid Arctic climate change: evidence from a remote high-Arctic lake. Nature Scientific Reports, 8, 6858, doi: 

N. Miller, M. Shupe, J. T. M. Lenaerts, J. Kay, G. De Boer, and R. Bennartz. Process-based evaluation of ERA-Interim, CFS version 2, and CESM in central Greenland, JGR-Atmospheres, 123, 10, 4777-4796, doi: 

B. No毛l, W. J. van de Berg, J. M. van Wessem, E. van Meijgaard, D. van As, J. T. M. Lenaerts, S. Lhermitte, P. Kuipers Munneke, C. J. P. P. Smeets, L. H. van Ulft, R. S. W. van de Wal, and M. R. van den Broeke, 2018. Modelling the climate and surface mass balance of polar ice sheets using RACMO2, Part 1: Greenland (1958-2016). The Cryosphere, 12, 811-831, https://doi.org/10.5194/tc-12-811-2018

J. M. van Wessem, W. J. van de Berg, B. P. Y. No毛l, E. van Meijgaard, G. Birnbaum, C. L. Jacobs, K. Kr眉ger, J. T. M. Lenaerts, S. Lhermitte, S. R. M. Ligtenberg, B. Medley, C. H. Reijmer, K. van Tricht, L. D. Trusel, L. H. van Ulft, B. Wouters, J. Wuite, and M. R. van den Broeke, 2018. Modelling the climate and surface mass balance of polar ice sheets using RACMO2, Part 2: Antarctica (1979-2016). The Cryosphere, 12, 1479-1498, https://doi.org/10.5194/tc-12-1479-2018

2017

A. Gossart, N. Souverijns, I. V. Gorodetskaya, S. Lhermitte, J. T. M. Lenaerts, J. H. Schween, A. Mangold, Q. Laffineur, and N. P. M. van Lipzig, 2017. Blowing snow detection from ground-based ceilometers in East Antarctica.  The Cryosphere, 11, 2755-2772, https://doi.org/10.5194/tc-11-2755-2017.

J. T. M. Lenaerts, S. R. M. Ligtenberg, B. Medley, Willem Jan van de Berg, H. Konrad, J. P. Nicolas, J. M. van Wessem, L. D. Trusel, R. Mulvaney, R. J. Tuckwell, A. E. Hogg, E. R. Thomas, 2017. Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling, Ann. Glac., .

L. van Kampenhout, J. T. M. Lenaerts, B. Sacks, D. Lawrence, B. Lipscomb, A. Slater, and M. R. van den Broeke, 2017. Improving the representation of polar snow and firn in the Community Earth System Model. JAMES, doi: 

J. Fyke, J. T. M. Lenaerts, H. Wang, 2017. Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability. The Cryosphere, 11, 2595-2609, doi: 

E. R. Thomas, M. van Wessem, J. Roberts, E. Isaksson, E. Schlosser, TJ Fudge, P. Vallelonga, B. Medley, N. Bertler, D. Dixon, J. T. M. Lenaerts, M. Curran, M. R. van den Broeke, and B. Stenni, 2017. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past., 13, 1491-1513, doi: 

N. Gourmelen, D. Goldberg , K. Snow , S. Henley , R. Bingham , S. Kimura , A. Hogg , A. Shepherd , J. Mouginot , J. T. M. Lenaerts, S. R. M. Ligtenberg , W. J. van de Berg. Channelized Melting Drives Thinning Under a Rapidly Melting Antarctic Ice Shelf. Geophys. Res. Lett., 44, 19, 9796-9804, doi: 

J. T. M. Lenaerts, K. van Tricht, S. Lhermitte and T. L'Ecuyer. Polar clouds and radiation in satellite observations, reanalyses, and climate models, 2017. Geophys. Res. Lett., doi: 

L. Woelders, J. Vellekoop, D. Kroon, J. Smit, S. Casad铆o, M. B. Pr谩mparo, J. Dinar猫s-Turell, F. Peterse, A. Sluijs, J. T. M. Lenaerts and R. P. Speijer, 2017. Latest Cretaceous climatic and environmental change in the South Atlantic region. Paleoceanography, doi: .

L. N. Boisvert, J. N. Lee, J. T. M. Lenaerts, B. No毛l, M. R. van den Broeke, and A. W. Nolin, 2017. Using remotely sensed data from AIRS to estimate the vapor flux on the Greenland Ice Sheet: comparisons with observations and a regional climate model. J. Geophys. Res., 122, 1, 202鈥229, doi: 

B. P. Y. Noel, W. J. van de Berg, S. Lhermitte, B. Wouters, H. Machguth, I. Howat,  M. Citterio, G. Moholdt, J. T. M. Lenaerts and M. R. van den Broeke, 2017. A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps. Nature Comm., doi: 

J. T. M. Lenaerts, S. Lhermitte, R. Drews. S. R. M. Ligtenberg, S. Berger, V. Helm, C. J. P. P. Smeets, M. R. van den Broeke, W. J. van de Berg, E. van Meijgaard, M. Eijkelboom, O. Eisen and F. Pattyn, 2017. Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf. Nature Climate Change, 7, 58鈥62, doi:

K. Poinar, I. Joughin, J. T. M. Lenaerts, and M. R. van den Broeke, 2017. The contribution of englacial latent heat transfer to seaward ice flux in western Greenland. J. Glaciol., 63, 237, 1鈥16, doi:  

S. Price, M. Hoffman, J. Bonin, T. Neumann, I. Howat, J. Saba, J. Guerber, D. Chambers, K. Evans, J. Kennedy, J. T. M. Lenaerts, W. Lipscomb, S. Nowicki, M. Perego, A. Salinger, R. Tuminaro, and M. van den Broeke, 2017. An ice sheet model validation framework for the Greenland ice sheet. Geosci. Model Dev., 10, 255鈥270, doi: 

Datasets

N. Wever, E. Keenan, T. Kausch and Lehning, M. (2022): SnowMicroPen measurements and manual snowpits from Dronning Maud Land, East Antarctica. Envidat. doi: .

N. Wever (2022): Terrestrial laser scans on Hammarryggen Ice Rise, Dronning Maud Land, East Antarctica. EnviDat. doi: .

N. Wever, S. White, T. Maksym, M. Proksch, P. Hunkeler and K. C. Leonard (2021): Datasets on snow and sea ice collected from Research Vessel Polarstern in the Antarctic Weddell Sea in austral winter 2013 (cruise leg ANT-XXIX/6, AWECS campaign):

  • Snow depth, snow+ice thickness and surface height from 3 ice stations: doi: .
  • Snow micro penetrometry measurements from 2 ice stations: doi: (original files) and doi: (curated files).
  • Automatic weather station buoys installed on 3 ice stations: doi: , doi: and doi: .
  • Ice mass-balance buoys installed on 2 ice stations: doi: and doi: .

Tools

We actively contribute to the physics-based, multi-layer snow cover model SNOWPACK: . doi: